Interactive Online Laboratories:

(Why, How, When, and Where)

Mats Selen UIUC Physics

Intro Physics at Illinois

Projects: Dept. Culture

IE's i>clickers **Prelectures** smartPhysics **IOLab**

Flipping the Classroom

Gary Gladding

Jose Mestre

Mats Selen

Tim Stelzer

Katie

Witat Crimmins Fakcharoenphol

Brianne Gutmann

Sara Rose

Noah Schroeder

Morten Lundsgaard

Michael Scott

Michel Herquet

Vincent **Boucher**

Geoffroy Piroux

Abe Kocheril

One of our main goals is to help students that try hard and still fail.

Fall/2013 Exam Analysis

Example: conceptual preparation question

A tennis ball of weight W is attached to a rope and swung in a vertical circle. The rope has length L.

Which of the following describes the tension in the string when the ball is at its **lowest** point moving with speed V?

- A) It is equal to W
- B) It is greater than W
- C) It is less than W

Fall/2013 Exam Analysis

Unscaled Total Exam Score vs Review Checkpoint Score

80

CP Score

Fall/2013 Exam Analysis

Unscaled <u>Calculational</u> Exam Score vs Review Checkpoint Score

Average = 71%

Average = 52%

Started flipping the classroom in 2008

Peer Instruction

0000000

Same semester (Fall 2013)

How important were _____ in helping you learn the material

A: Essential, B: Very Important, C: Somewhat Important, D: Not very important, E: Useless

Current status at UIUC:

Lecture: (50 min) JiTT & Peer Instruction, smartPhysics (good)

Discussion: Peer instruction, trained & mentored TA's (good)

Homework: Online, including Interactive Examples (good)

Labs: Group work (traditional) (not so good)

Problem = Opportunity:

Optimize labs to really bolster conceptual knowledge

Reality:

Not so easy due to both financial & pedagogical constraints

Budget, Space Timing

Interactive Online Labs

Hands-on activities delivered & graded online.

The Big Idea:

Each student has their own wireless device (buy cheap).

They are guided through each activity by interactive software.

Timing of activities driven by pedagogy, not space/budget.

Not just a simulation...

Wireless DAQ hardware

Basics

 2.4 GHz wireless communication with USB dongle (virtual com port).

- Acquires data & sends to PC for display in real time.
- Controlled by PC/Mac application which can also display lesson, ask questions, keep score, (think smartPhysics)
- Designed to be opened up, messed with, reprogrammed,
 (think Arduino)

Inside

- 3D accelerometer
- 3D magnetometer (.001 B_F)
- 3D gyroscope
- Force probe (± 10 N)
- Position encoder for x, v, a
- Light intensity sensor
- Atmospheric pressure sensor
- Temperature sensor
- Speaker
- Microphone
- DC coupled high gain differential amplifiers w/ external inputs
- Extensive expansion port including ADC in, PIO & DAC out, FTDI (First expansion board: High quality ECG)
- High sample rate (up to 5 kHz) with transfer to PC in real time.

Example: Measurement of position, velocity and acceleration

Example: Collisions

Riding an Elevator

On plane to AAPT (FFT - accelerometer)

On plane to AAPT (FFT - microphone)

Advanced Lab: Oscillations

Advanced Lab: Speed of light

Top Connector

6 analog inputs

- 1 High Gain DC coupled differential input
- 6 digital input/outputs
- 1 DAC output (8 bit)
- 1 FTDI header

ECG:

With U of I Med School & varsity athletic department

Simple & cheap & low noise

Playing is fun, but we also need to study the best way to use this tool (NSF/TUES).

Our studies are focused on students working independently on handson activities.

Addressing Conceptual Problems in 1D Kinematics Using Interactive Online Laboratories

Katie Ansell
AAPT Summer Meeting
July 15, 2013

Study - 1D Kinematics Review

Reading Group

N=25

Mathematical explanations

14 numerical examples

Figures of graphed motion

30-35 minutes

IOLab Group

N=22

Training plus three guided activities

Students asked to make predictions

Integration tool

10-15 minutes

Goal 1: Address Situational Difficulties

Post Test – Overall Learning Gains

IOLab Group Gain on Post Test Questions

Improved Graph Interpretation

Group Performance on Visual Integration Questions

Less likely to confuse velocity & accel.

Choose **acceleration vs time** graph which corresponds to the motion of the car:

The car moves toward the right, slowing down at a steady rate.

Not just mechanics:

2011 E&M Clinical Study: Post Test Scores (by Student Ability)

Future Research (Spring 2014):

- Select two groups of about 50 weaker students from calc. based mechanics class.
- Have them do hands on "dorm room" IOLab activities as part of their smartPhysics Pre-Lectures.
- Assess performance using conceptual questions developed last semester.

Software Status

- Original Windows only software
 - Full lesson driver capability
 - Used for our first 2 studies at Illinois
 - Highly capable, clunky implementation, bad developer (me)
 - MS Visual Studio/C#
- First version of new Mac/Windows software
 - Written by the developers of smartPhysics
 - Basic functionality now, sF integration to come.
 - Cross platform C++ library (public API available)
 - GUI based on AngularJS web framework running on the chromium rendering engine.

Hardware Status

- We are building 300 new devices "now".
 - Received the first 4 last week & the rest should arrive later this month.
 - We will have enough devices to finish our own research and support several interested colleagues.
- We have a meeting with Macmillan later this week to discuss future manufacturing plans.
- As we plan the next manufacturing run we will need to figure out how many to build (so please talk to me).